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ABSTRACT
Model selection in neural networks can be guided by statistical procedures, such as hypothesis tests, information
criteria and cross validation. Taking a statistical perspective is especially important for nonparametric models like
neural networks, because the reason for applying them is the lack of knowledge about an adequate functional
form. Many researchers have developed model selection strategies for neural networks which are based on
statistical concepts.  In this paper, we focused on the model evaluation by implementing statistical significance
test. We used Wald-test to evaluate the relevance of parameters in the networks for classification problem.
Parameters with no significance influence on any of the network outputs have to be removed. In general, the
results show that Wald-test work properly to determine significance of each weight from the selected model. An
empirical study by using Iris data yields all parameters in the network are significance, except bias at the first
output neuron.

Keywords: parameter significance, Wald-test, classification.

INTRODUCTION
One of the most unresolved questions in the

literature on neural networks (NN) is what architecture
should be used for a given problem. Architecture
selection requires choosing both the appropriate number
of hidden units and the connection thereof (Sarle 1994).
A desirable network architecture contains as few hidden
units and connections as necessary for a good
approximation of the true function, taking into account
the trade-off between estimation bias and variability due
to estimation errors. It is therefore necessary to develop
a methodology to select an appropriate network model
for a given problem.

Reed (Reed 1993) provides a survey about the
usual approaches pursued in the network literature. The
approaches, for example, are regularization, pruning,
and stopped training. Regularization methods choose
the network weights such that they minimize the
network error function (e.g. sum of squared errors) plus
a penalty term for the networks complexity. Another
way to justify the regularization term is to formalize
and interpret the method in a Bayesian framework. This
was reviewed for example in Bishop (1995) and Ripley
(1996).

Pruning methods identify the parameters that do
not ‘significantly’ contribute to the overall network
performance. However, this ‘significance’ is usually not
judged on the basis of test statistics (an exception is
Burgess (1995), who uses F-tests to identify
insignificant parts of a network model). Pruning methods
use the so-called ‘saliency’ as a measure of a weight’s
importance. The saliency of a weight is defined as the
increase in network model error (e.g. sum of squared
errors) incurred by setting this weight to zero. The idea
is to remove the weights with low saliency; however,
the method does not provide any guidelines as to
whether or not a saliency should be judged as low. It is
shown that the computation of the saliency is
generalized by a corresponding Wald-test statistics
(Anders & Korn 1996). An alternative to conventional
pruning methods is developed and tested in Kingdon
(1997). The basic idea of the approach, called ‘network
regression pruning’, is to remove network weights while
retaining the network’s mapping. A weight is seen as
redundant if, after its removal, the original mapping can
be (approximately) recovered by adjusting the remaining
weights of the effected node.

In the application of stopped training, the data
set is split into a training and a validation set. If the
model errors in the validation set begin to grow during
the training process, the training algorithm is stopped.
In statistical terms, the method tries to make up the
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 The Wald statistic allows the simplest analysis,
although it may or may not the easiest statistic to
compute in a given situation. The motivation for the Wald
statistic is that when the null hypothesis is correct

ˆ nSw  should be close to  Sw s , so a value of

ˆ n Sw s  far from zero is evidence against the null

hypothesis.
The theorem about Wald statistic that be used

for hypothesis testing of parameters in NN model is
adapted from White (1999) Theorem 4.31. The result of
adaptation for our specific purpose is as follow:
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significance of these estimators are presented at Table
1.

Usually, neurons in NN are always full connectivity.
By using this Wald test, it is possible that there are

weights which are not significance. Based on Table 1,
all of the weights are significance except bias at the
first output neuron. Therefore, the connection should
be removed and the best model is not fully connected.

CONCLUSION
In general, neural networks are applied to problems

where slight is known about the correct functional form.
Therefore, a statistical approach to the model selection
seems particularly important and should become an
integral part of neural networks modeling. Wald-test
work properly in theoretically because ŵ  is

asymptotically normal with mean w  and covariance

matrix *(1/ )n C , or * *ˆ( ) ~ (0, )n w w N C .

Empirically, Wald-test is also applicable for determining
parameter significance of the selected neural networks
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Figure 1a. FFNN with single hidden layer
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Figure 1b.  Architecture of  NN (4-1-3) with the value of weights estimation

Table 1. Wald test of weights estimation for NN (4-1-3)

Weight Coefficient S.E. Wald test p-value

bh1 1.44 0.33496 18.480 0.00002

i1h1 0.78 0.07969 95.766 0.00000

i2h1 1.01 0.08373 145.570 0.00000

i3h1 -1.69 0.12108 194.825 0.00000

i4h1 -1.28 0.13164 94.544 0.00000

bo1 3.72 2.51477 2.188 0.13907

h1o1 -18.24 2.76089 43.647 0.00000

bo2 14.57 2.74225 28.230 0.00000

h1o2 6.19 2.78325 4.946 0.02615
bo3 33.32 2.60121 164.081 0.00000

h1o3 -39.54 3.09831 162.864 0.00000




